Global asymptotic stability in a class of generalized Putnam equations
نویسندگان
چکیده
منابع مشابه
Global asymptotic stability in a class of generalized Putnam equations
It was conjectured that for every integer m 3 the unique equilibrium c = 1 of the generalized Putnam equation xn+1 = ∑m−2 i=0 xn−i + xn−m+1xn−m xnxn−1 + ∑m i=2 xn−i , n= 0,1,2, . . . , with positive initial conditions is globally asymptotically stable. In this paper, we prove this conjecture. © 2005 Elsevier Inc. All rights reserved.
متن کاملGlobal Asymptotic Stability in a Class of Difference Equations
We study the difference equation xn = [( f × g1 + g2 +h)/(g1 + f × g2 +h)](xn−1, . . . ,xn−r), n = 1,2, . . . , x1−r , . . . ,x0 > 0, where f ,g1,g2 : (R+) → R+ and h : (R+) → [0,+∞) are all continuous functions, and min1≤i≤r{ui,1/ui} ≤ f (u1, . . . ,ur) ≤ max1≤i≤r{ui,1/ui}, (u1, . . . ,ur) T ∈ (R+) . We prove that this difference equation admits c = 1 as the globally asymptotically stable equi...
متن کاملGlobal Asymptotic Stability for a Class of Nonlinear Chemical Equations
We consider a class of nonlinear differential equations that arises in the study of chemical reaction systems known to be locally asymptotically stable and prove that they are in fact globally asymptotically stable. More specifically, we will consider chemical reaction systems that are weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show that if for ...
متن کاملGlobal Asymptotic Stability in a Class of Nonlinear Differential Delay Equations
An essentially nonlinear differential equation with delay serving as a mathematical model of several applied problems is considered. Sufficient conditions for the global asymptotic stability of a unique equilibrium are derived. An application to a physiological model by M.C. Mackey is treated in detail.
متن کاملAsymptotic Stability of a Class of Impulsive Delay Differential Equations
This paper is concerned with a class of linear impulsive delay differential equations. Asymptotic stability of analytic solutions of this kind of equations is studied by the property of delay differential equations without impulsive perturbations. New numerical methods for this kind of equations are constructed. The convergence and asymptotic stability of the methods for this kind of equations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.09.049